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1.  INTRODUCTION 

Composite material offers a great potential and flexibility in structural design because of the anisotropy 

of material properties, unique ply-by-ply constructions, and novel fabrication methods. To extract the 

maximum performance, structures, in general, are designed with various ply orientations and stacking 

sequence from layer to layer within the structures. This flexibility does enhance the structural design; 

however, it also increases the degree of difficulty for analysis, particularly by using the finite element 

method (FEM). This is especially true for a thick-section composite structure, which may consist of 

thousands of anisotropic layers. 

There are two analytical approaches that can be used for analysis of composite structures by FEM, 

a layer-by-layer analysis or a property smearing model. The layer-by-layer analysis approach will, in 

general, result in a huge finite element model with thousands of elements required to maintain a proper 

aspect ratio of elements. Therefore, a tremendous computational effort is required, especially for a 

dynamic analysis. For a thick-section large composite structure, the layer-by-layer approach is not 

practical. 

Another approach is to use the smeared (effective) properties for the elements. Accordingly, each 

element consists of several layers and material blocks. The properties of elements are calculated from the 

properties of the contained layers based on certain assumptions. The effective properties of the input 

model are crucial to the accuracy of FEM analysis. Several models based on either "laminated plate 

theory" or "rule of mixture" have been developed to compute the effective properties for use for FEM 

analysis. However, these approaches cannot be used to calculate the effective properties accurately for 

a very common element with irregular geometry. For example, a taper-shaped element from a filament- 

wound cone model is illustrated in Figure 1. 

Enie and Rizzo (1970), Pagano (1974), and Christensen and Zywicz (1989) derived the effective 

properties from laminated plate theory. Particularly, Pagano's model is an exact three-dimensional (3-D) 

solution calculated from a laminated plate. These models were all developed by assuming a finite 

thickness in the transverse direction (2-D geometry). In general, a constant interlaminar shear stress 

distribution through the thickness is assumed for these models. Properties calculated from these models 

may be suitable for thin-shell structures, but are not proper for a thick structure or a block element since 

these models do not correctly account for the properties in the transverse direction, especially for the 

transverse shear and shear coupling properties. In addition, the plate theory is limited to a rectangular 

geometry and can never be used for an arbitrarily shaped geometry which commonly occurs in FEM 

modeling. 

1 



Finite element model 

Figure 1. Taper-shaped elements in an FEM cone model. 

Models developed by Chou, Carleone, and Hsu (1971) and Sun and Li (1988) assumed a uniform 

displacement in the planes parallel to the laminate and a uniform stress in the transverse direction of the 

plane. The transverse (interlaminar) shear components are calculated on the basis of volume average. The 

in-plane properties resulting from this approach are correct. However, the transverse shear properties are 

not accurate enough and, thus, not suitable, for thick-section structures, which generally have large 

transverse shear deformations. 

One of the common shortcomings of these models is the limitation of geometry. The laminate is 

generally restricted to uniform thickness flat plate or thin shell configurations with layers aligned along 

element boundaries. Element faces must be rectangular in both the plane of the laminate and the through- 

thickness directions. This limitation makes it very difficult to model regions containing ply drop-offs, or 

layer terminations, and impose restrictions on the capability to generate finite element meshes for complex 

geometries that require changes in mesh density and/or arbitrarily shaped elements that cannot be readily 

aligned with the layers of the laminate. 

Figure 2 shows a generalized case of an element in a region containing several materials.   The 

effective properties of the element certainly cannot be calculated correctly with any of the models 
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Figure 2. Arbitrarily shaped element with multiple anisotropic layers and materials. 

mentioned previously. Commercial packages typically use the volume average approach for computing 

effective properties in elements such as this, leading to potential inaccuracies in results, especially for 

irregular shaped elements. Accordingly, there is a strong need to develop an accurate property model for 

FEM applications. 

The objective of this investigation is to develop a model that provides accurate 3-D effective properties 

for arbitrarily shaped solid continuum elements containing multiple layers and materials with various 

orientations and shapes. The second objective will be to develop a pre-processor incorporating the 

effective property model in generating accurate finite element representations of 3-D laminated material 

structures for ABAQUS and DYNA3D. 

2. MODEL DEVELOPMENT 

Consider a portion of a material block contained within some internal region of an element's volume. 

Relative to the global frame with coordinates (x1, x2, x3) illustrated in Figure 3, the generalized elastic 

constitutive behavior of each material block is described by the relations 

tj= Cjl ck li       Hk El ' 



Material ^s=^ 
Block /s 
Transform   //        n\ 

Element 
sform 

Material Blocks and Element 

Figure 3. Coordinates transforms of material blocks and elements. 

i k il where tj is the stress tensor, Sj is the strain tensor, and Cjk represents the material stiffness tensor 

relative to the global frame. 

We assume the deformation field within the volume portion contained in the element bounds is 

continuous such that it can be approximated as a function of the displacements at the corner points that 

bound the volume portion. 

We first incorporate the transformation of global coordinates to isoparametric coordinates within the 

volume portion 

xi=NaXa
1, (1) 

where the xj are the global coordinates of the corner points. 



The notation used herein follows the standard summation convention for repeated indices. English 

indices correspond to the range (1,2,3), referring to the three independent spatial components of a variable 

while Greek indices correspond to the (l,2,...r) discrete point values and N^g1, g2, g3) isoparametric 

interpolation functions used for describing the continuous variation of a parameter within a volume. The 

interpolation functions, written in terms of the isoparametric coordinates g1 of the volume, are expressed 

as: 

Linear formulation (T=8): 

N^ld-g1) (1-g2) (1-g3) 
o 

N^i-d+g^d-g^d-g3) 
o 

N3=i.(l+g1)d+g2)(l-g3) 
o 

N^i-d-g1) (l+g2) (1-g3) 
o 

N^i-d-g^d-g^d+g3) 
o 

N^id+gbd-g^d+g3) 
o 

N^i-d+g^d+g^d+g3) 
o 

N^i-d-g1) d+g2) d+g3) 
o 

Quadratic formulation (T=20): 

N^-i-d-g1) d-g2) 
o 

N^-J-d+g^d-g2) 
o 

N3 = -I(l+g1)d+g2) 
o 

N^-i-d-g^O+g2) 
o 

N^-Id-g^d-g2) o 

N^-i-d+g^d-g2) 
o 

N^-Id+g^d+g2) 
o 

N^-id-g^d+g2) 
o 

1-g3) (2+g1+g2
+g3) 

1-g3) (2-gX+g2+g3) 

1-g3) (2-g1-g2
+g3) 

1-g3) (2+g1-g2+g3) 

l+g3) (2+g1+g2-g3) 

l+g3) (2-g1+g2-g3) 

l+g3)(2-g1-g2-g3) 

l+g3)(2+g1-g2-g3) 



N^i-d-g1) (l+g1) (l-g2) (l-g3) N^ld-g1) (1+gX) 0+g2) d+g3) 
4 4 

N10=l(l-g2) (l+g2) (l+g1) (l-g3) 
4 

N11=i(l-g1)(l+g1)(l+g2)(l-g3) 
4 

N12=l(l-g2) (l+g2) (l-g1) (l-g3) 
4 

N13=1(1 -g!) (1 +g b (1 -g 2) (1 +g 3) N19=1(1 -g 3) (1 +g 3) (1 +gx) (1 +g 2) 

N16=l(l-g2) (l+g2) (l-g1) (l+g3) 
4 

N17=JL(l-g3) d+g3) d-g1) d-g2) 
4 

N18=JL(l-g3) (l+g3) (l+g1) (l-g2) 
4 

N14=l(l-g2) (l+g2) (l+g1) (l+g3) 
4 

N20=l(l-g3) (l+g3) (l-g1) (l+g2) 
4 

Displacements within the volume portion are given by 

ttä = Nou,;, (2) 

where the U^ represents displacement components of the corner points. The strain-displacement relations 

are thus 

4-i   +  
axJ    ax 

1 iül 
2 ag«n 

m 
\ 

hZvi.hzv* 
\ axJ ax1 

j 

(3) 

The strain energy contributed by the material block is thus expressed as 

"(M) 
_1 
2  L -ik (M) / 

9Na 3NP 9gm  dg dv 
ag

m   3gn   3xJ   3x 
Ua Uß

k« 
(M) 

(4) 

the integration being performed over the volume portion of the material block (M) contained within the 

element This defines the stiffness of the material block portion as 

K aß 
ik (M) fcJCM)   J 

9Na  8NP  3gm  8gn 

dgm dgn axJ ax1 
dv (5) 

(M) 



so that the strain energy can be written as 

-CM)- 2 K aß 
ik ui Uft

k. 
(M)     a     P 

(6) 

The components of force contributed by the material block at comer point a are obtained from 

3E (M)  _ 

au. 
K aß 

L » J(M)      L   * J(M)     ß 
uk. (7) 

a 

Summing over all material blocks that are common to comer point a, results in an expression for the net 

external applied force on that point 

F,"-E 
M 

K; 
aß UB *J(M) "ß (8) 

Assuming a total of r corner points contained within the volume of the element, there will be 3 x r 

equations of the form (8). Let the first Cl of these comer points correspond to the nodes of the element 

(Q < T), the next A correspond to comer points lying on the surface of the element at locations other than 

the element nodes (0 < A < (T-ß)), and the last (r-Q-A) correspond to points falling within the interior 

of the element boundary. 

If we represent the material stiffness of the overall element as an equivalent homogeneous anisotropic 

material with stiffness tensor CjJ
k, then the total strain energy for the element is given by 

I - i cj ik /- 
as? asp aqm aqn 

dv 
aqm aqn axJ ax 

u; up
k 

(9) 



where y,p=l,...ß and the integration is over the entire volume of the element, V; SY represents the element 

deformation shape functions; and qm are the isoparametric coordinates of the transformation 

i-S'X,,1 S'-SV.q^q3). (10) 

with X * corresponding to the global coordinates of the node point y. The force applied to node y is given 

by 

/■ 

as? asp 3qm aqn 

3qm  3qn   9xJ   dx1 
dv ?;■ (ID 

where y,p=l,...,ß. 

To establish the equivalent material stiffness, we equate the expression for total strain energy in the 

element (9) to the sum of the strain energies contributed by the individual material blocks (6), i.e., 

J"- as? asp aqm aqn 

3qm  3qn   dxi   dxl 
dv u; up

k 

E { IKfl(M) Uy Up" + 2 tKS(M) U; Uß
k + [Kf]^ Up1 U.k }. 

M 

where y,p=l ß and ß,(ö=(ß+l),...,r. For convenience, we define the following: 

(12) 

Jl     J 3qm 3qn   3xJ   ax1 
(13a) 

BiP - E 
M 

K 
■I CM) 

(13b) 



Using this notation, we can write (12) as 

Cl V U; Up
k = Bf U; Up

k + 2 B * U; Uß
k + ßf VJ U(D

k, (14) 

where y,p=l Q and ß,<ö=(ß+l),...,r. 

As will be shown, the displacements of corner points ß=(ß+l),...,r can be expressed as functions of 

the element node displacements, i.e., 

ußk = Qß? ur (15) 

where y=l...Q and ß=(ß+'l) r. 

Substitution of (15) into (14) thus results in the expression 

C* A? U,1 Up
l - B? UT' U„k ♦ 2 B* Q* U,' Up'JL«ltf" Q» Q» «,' Up

k,       (16) 

where y,p=l,...,Q and ß,(o=(ß+l) r. 

If we now take the derivative of (16) with respect to the displacement of an arbitrary element node 

a in degree-of-freedom m, we obtain 3xfl equations: 

rjl   Aap T7k - *~ink Ajl     up   " 
Rap      Raß nlp      Rpß nla      _ ß© nJa nlp 
Bmk + Bml   Vßk + «kl   Qßm + ßji     Qßm ^ Up\ (17) 

where a,p=l,...,ß and ß,(ö=(ß+l),...,r. 



Since the Up are independent of each other, we obtain the relations 

Cik ^1    " Bik   + Bim Vßk    + Bfcm Qßi    + Bim   Qßi Qak , (18) 

where Y»P=l.-..,ß and ß,co=(ß+l) r. 

Recalling that from the transformation (10) we have, 

ax1     as? vi 
m       -\_ m dqm      dq 

(19) 

and using the relations 

ax1 aqm = _as^ aq_^„i = gi 
aq

m axj    aq
m axj ^    j' 

which are a consequence of the chain rule for partial differentiation, we can multiply expression (13a) 
i      k by X-, X    to obtain 

AJ!PxY
ixp

k=f-i!li^ii:ii;xy
ixp

kdv = v8;o1
k, m *     -t     P       JV  aqm   Bqn    3Xj    axl    -Y      P J    1 

where V is the total volume of the element, and 8) is the Kronecker delta. 

r „ s Multiplying expression (18) by Xy X   thus results in 

uik Ajl    *y  Ap   ~ uik   v  ~ 
R7P   .  RYß nmp      Rpß nmy      R ßco n*y nmp Bik   + Bim Vßk    + «km Qßi    + Bjm   Qßi Q«* Xy'Xp8, (21) 

10 



where Y,p=l,.„,ß and ß=(ß+l),...,r, or, upon dividing by the element volume, we arrive at an expression 

for the equivalent element material stiffness tensor, i.e., 

rJ1- 1 

*~ik - — 
[YP ^ rjTß n™? ^ nPß nmY ^ TJ ß<° nmY nnP BiK - B£ Qf + B£ Q£" + B - Q£' Q- j X/ Xp\ (22) j Yl 

where y,p=l,...,Q and ß=(fl+l),...,r. 

It remains to develop the coefficients QQJ in equation (15), which expresses the displacements of the 

corner points (ß+1) through T in terms of the displacements of the element nodes. 

For the A corner points lying on the surface of the element, we require that the net force on these 

points in any direction tangent to the surface be set to zero, and also that the point remains on the surface 

as the element deforms. The transformation relations between global cartesian coordinates (x1, x2, x3) and 

isoparametric coordinates (q1, q2, q3) must be developed to incorporate these constraints. 

At the location of one of the comer points v ((ß+1) < v < (Q+A)), an arbitrary differential length 

vector can be expressed in the global cartesian frame as 

ds = dx * Ij, (23) 

where Ilf I2, I3 correspond to the units vectors along the global cartesian coordinate directions. From 

the transformation (10) we obtain 

dx J = ill dq k, (24) 
dq 

so that 

ds=iildqkIi. (25) 
3qk 

11 



We define the basis vectors for the isoparametric coordinates as 

to obtain 

bk = ÜZl Ij, (26) 
9qk 

ds = bkdq \ (27) 

in the isoparametric system. From this we obtain the second rank metric tensor, 

«H-bk'b!-*    * (28) 
3qK dql 

In general, the basis vectors of the isoparametric system are not orthogonal so that the off-diagonal 

components of the metric tensor are not zero. The basis vectors are tangent to the isoparametric 

coordinate curves at the point v. Since the element surface on which v lies corresponds to a surface where 

one of the coordinates, say qk, is a constant, the basis vectors, tangent to the other two coordinate curves 

at v, are tangent to the element surface at v, (i.e., mm]    and ^n]    (m * k and n * k) He along tangents 

to the element surface at v, with the surface corresponding to qk = constant in the isoparametric system). 

From (28) we can develop unit tangent vectors along the surface, given by 

WK - -=L= MS - (4n)« .     '     (5J& (29) r  v "'/(v) \ "'(v)        C~ 
yomm yonn 

where the line under the repeated indices indicates that summation has been suspended. 

We can develop the reciprocal base vectors for the isoparametric system from the vector cross 

products 

12 



b1 = _L b2 x b3,   b2 = _L b3 x b^,   b3 = _L b2 x fy, (30) 
Vg i/g )/g 

where g = det g^. (31) 

These relations can be written more compactly as 

b* = -±J™ (bmf x (bnp, (32) 
2v^ 

where e1™111 is the familiar permutation symbol, i.e., 

e*™1 = 1 if k, m, n is an even permutation of 1, 2, 3; 

ekmn _ _j if j^ m> n is an odd permuatation of 1, 2, 3; and 

e1™11 = 0 if any two indices are the same. 

The reciprocal base vector 

corresponding to q* = constant, i.e., 

bk at v is therefore in the direction normal to the element surface 
J(v) 

if     the surface corresponds to q1 = constant, [ b1L . lies along the normal and |$2 Lv) and|§3].. 

are tangents to the surface; 

if     the surface corresponds to q2 = constant,   b 2 L . lies along the normal and [63 L . and [6 A 

are tangents to the surface; and 

if     the surface corresponds to q3 = constant, Lb 3J(V) lies along the normal and [6 2 L. and[§2L} 

are tangents to the surface. 

13 



We now define the contravarient second rank tensor 

gkl = bk-b1. (33) 

This now allows us to express the unit normal at the point v as 

The definitions (29) and (34) allow us to apply the necessary constraints for the corner points (ß+1) 

through (ß+A). The surface corner points must first, however, be categorized according to whether a 

point lies along one of the edges of the element, or whether it lies on an element face. Let the points 

(fl+1) through (ß+E), (KB<A, correspond to the surface corner points lying on the edge of the element, 

and the points (ß+E+1) through (fl+A) correspond to the remaining comer points that lie on the element 

faces. 

For surface comer points lying along an element edge assume that the comer point v lies on an 

element edge corresponding to the coordinate curve qr. From expression (32), the reciprocal base vectors 

at point v are defined as 

(bk)(v) = -L e*™ (bm)(v) x (bn)(v). (35) 

We require the displacement components at v to be constrained along the direction of bk(k*r) such 

that the point remains on the surface qk = constant, corresponding to each of the two element faces that 

intersect at the edge. The constraint is thus expressed as 

Uv* f, • (e k)(v) = SP(q1,q2,q3)(v) U1 I, • (6 k)(v), (36) 

14 



where p=l,...,ß and v=(ß+l),...,(ß+E), with (6 k)(v) representing the unit vector along the direction of 

)(v)! (bk)f ->as defined in (34). 

-         3x 1 '■ Since bm = L, we can write 
aq

m 

or 

gk = J_ ekmn _3xj_   d^_ f_ x j. (3?) 

2Vg~        aq
m 3q 

gk . J_ etao      _ft^ ^ i (3g) 
2^ 1Jl3qm3qn 

where we have used the expression for the vector cross product 

Ij X Ij = By, i!. (39) 

The displacement constraints at point v lying on an element edge corresponding to the isoparametric 

coordinate curve q1 can thus be written as 

1 <*"" £„, -*! -£l Uv' - ! e1™ ejj, iilill S"(q',qV)(v) U '   (40) 
2^^ 3q™ aq"       Jä^B sq" aq 

or 

e*™ e- i^liii U,1 = ekmn £ijl ill ±1 SP(q1,q2,q3)(v) Up\ (41) 
J   3qm 3qn J   dqm  dqn P 

where k 56 r, p=l,...,ß, and v=(ß+l),...,(&+E), and where it is understood that the expression is to be 

evaluated at the point v. 

15 



The third constraint expression is provided by the requirement for zero force along the coordinate 

curve qr at v. To impose this condition, we first write (8) using the definition (13b), i.e., 

FiV - B£PUp
k + B^X Bj*Up

k + B<V*, (42) 

where p=l,...,ß, v, (ö=(ß+l),...,(ß+E), u=(ß+E+l) (ß+A), and £=(ß+A+l),...,r. 

From (26), the basis vector tangent to the coordinate curve cf is expressed as 

br = fiLlj. (43) 
3qr 

The condition for zero force along q1 can thus be enforced by forming the vector dot product of 

(42) with (43) and setting the result to zero, i.e., 

/(v) 

or, 

FiVfi ' (BrL " °> <*> 

dx1 Rva>     1      dx1 Rvji     I      Jx'     vL  1_      dx1 Rvp TT 1 _BÜ    U. + _Bfl   U,+_BÜ   U;--_BD   Up, (45) 

r corresponds to coordinate curve qr along the element edge where p=l,...,ß, v,(D=(ß+l),...,(Q+E), 

p=(ß+E+l) (ß+A), and C=(ß+A+1) T. 

For surface corner points lying on an element face, in the case where point v represents a corner point 

lying on the element face corresponding to cf = constant, expression (41) provides only one constraint 

equation, restricting the displacement components of point v such that it remains on the surface whose 

normal is (e1 k)(v)j.e., 
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e*» e^ -*1  *i U,1 = F" ^ -*1  *i SP(q\qW)W Up1, (46) 
J   3q m  3q n J   9qm  dqn (>    P 

where k corresponds to qk = constant, p=l,...,ß, and v=(Q+E+l),...,(Q+A). 

The other two constraint equations are obtained from the requirement for zero force along the 

directions tangent to the element face at point v, i.e., 

F.Vfc.g-O.-F.Vkg-O. (47) 

with [smr   and fenr  defined in (29) and corresponding to unit surface tangent vectors at point v on the 

element surface representing q* = constant 

These conditions lead to two equations of the form (45), 

ax1 Rv©   l   ax1 Rvp   l   ax1 RvcTIi_   ax'   vP   i (M _BÜ   U„ + —Bü   U„+__BU   UC--_BÜ   Up, (48) 

where r*k, p=l,...,Q, co=(ß+l),...,(ß+E), v,p=(ß+E+l),...,(Q+A), t=(Cl+A+l),...,T, and where it is again 

understood that (46) and (48) are to be evaluated at the point v. 

For the remaining corner points ((Q+A+l) through T) that lie internally within the element's 

boundaries, we require zero net force in all directions. Expression (42), with the left-hand side set to zero, 

provides the constraint equations for these internal points, resulting in 

K*< * *£< + B$v£ - - B^Up
k, (49) 

where i=l,2,3, (p=l,...,Ü), (<D=(n+l),...,(Q+E)), (u=(Q+E+l) (Q+A)), and (v£=(fl+A+l),...,r> 
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Expressions (41), (45), (46), (48), and (49) together form a system of 3x(T-Q) equations in the 

3x(T-ß) unknown displacements for the A surface comer points and the (r-ß-A) internal comer points. 

This system of equations can be solved to obtain the relations (15), expressing the displacement 

components of all non-nodel corner points in terms of the displacement components of the elements nodes. 

Wedge Prismatic Elements 

The constraint equations developed above are suitable for rectangular prismatic elements where the 

edges align with the isoparametric coordinate curves. For wedge prismatic elements, an alternate set of 

constraint equations must be employed for comer points lying on the element surface. 

We shall assume that the isoparametric representation of the wedge prismatic element is such that the 

two triangular faces correspond to surfaces of q3 = constant, and that two adjacent four-noded faces of 

the element correspond with the surfaces q1 = 0 and q2 = 0, in a manner that forms a right-handed frame 

of reference. The intersection of the third four-noded face with a surface represented by q3 = constant 

results in a curve represented by q2 = 1 - q1. A vector lying tangent to this curve at a point v can be 

written in terms of the basis vectors as 

(Q(v) = (bx\v) - (b2)(v) = 
'fo* _ 3x/ 

(50) 

(C)(r) and the basis vector (b3)(V) thus represent two independent vectors that are tangent to the third 

four-noded element face at the point v. 

The normal to this element face at point v can be obtained from the cross product 

N(v) = (0(v) x C>3)(v) 
ax1 

aq
! 

aq2 
IiX 

3xJ 

J(y) dq- h- 
>) 

(51) 
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or 

N(v) - eijk 
ax 

A 

aq1 

ax1 

aq2 

axJ 

A aq- 
(52) 

f* 

The constraint equations for wedge prismatic elements can now be developed. As with the rectangular 

prismatic elements, we must distinguish between surface corner points that lie on an element edge 

(i.e., points (ß+1) through (Q+E)), and surface corner points that lie on element faces ((ß+E+1) through 

(Q+A)). 

For surface corner points lying along an element edge, the two displacement constraint equations 

provided by (41), and the force constraint equation provided by (45) are applicable to those surface comer 

points lying on wedge prismatic element edges that are aligned with the q1, q2, and q3 coordinate curves. 

The only two element edges for which the constraint equations (41) and (45) do not apply, are the edges 

corresponding to q2 = 1 - q1 on the two triangular faces of the element 

Since the triangular faces correspond to surfaces q3 = constant, the normal to these faces at a point 

v is obtained from the reciprocal base vector given by (38), i.e., 

(b3)(v) = 
2\/g 

_3mn _ 
e        eijk 

f .\ 
ax1 ax1 

aq
m aq

n 
(53) 

>) 

The constraint equations for a point v lying on one of the edges corresponding to q2 = 1 - q1 are thus 

obtained as follows along the direction N(v), we enforce the displacement constraint 

N(l) • U^1 f, - Nv ' SP(q1,q2,q3)(l) Up
! flf (54) 
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where p=l,...,ß and v=(Q+l),...,(Q+E), so that, 

/ 

«Hü 

A 
dx1 _ 8X1 

[dql      aq2J(v) 

f     .\ 
axJ 

9q- 

( 

Uv = eyi 
AÖ 

dx1      dx1 

dq1      3q2 

A f      -\ 
3xJ 

Al) ^z/\ 3q- 
SPCq1^2^3)^^1,   (55) 

Al) 

where p=l,...,fl and v=(ß+l),...,(ß+E). 

Along the direction (b3)(v), the required displacement constraint is 

(b3)(v) • Uv* 1, = (b3)v • sV.q^q3)^) Up lv (56) 

where p=l,...,ß and v=(Q+l),...,(ß+E); or, 

_3mn _ 
.\ 

9X1 3xJ 

8qm      dqn 
Uv = e3mn £iji 

Al) 

.\ 
dx1       dx J 

l^m        ^nJ(v) 
Sp(qSq2.q3)(v) Up1,       (57) 

where p=l,...,ß, and v=(Q+l),...,(ß+E), and along the direction (C)(v), which is tangent to the edge at 

v, we require the force to be zero, i.e., 

(C)<v) • FA = 0. (58) 

resulting in 

dx{ 

aq1 

ax1 

aq2 
AD 

(Bfuj.Bfu^'.Bfu^- ax1 _ ax1 

aq1    aq
2 

AD 
V Bf U„, (59) 

where p=l,...,ß, v,©=(ß+l),...,(ß+E), p=(ß+E+l) (ß+A), and C=(Q+A+1) r. 
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For surface corner points lying on an element face, only those corner points lying on the element face 

whose normal is given by (52) require constraint equations that are different from (46) and (48). 

Expressions (55) and (59) provide two of the constraint equations, except with v corresponding to 

points (ß+E+1) through (ß+A). The third constraint equation corresponds to the requirement for zero 

force along the direction of the basis vector (b3)(r) that can be obtained from (48) by setting r = 3, i.e., 

*! B™ U.1 + *! Bu
Vp IT1 + ill Bu

vC U,1 - - tl Bü
Vp U1, (60) 

where p=l,...,ß, ©=(ß+l),...,(ß+E), v,p=(ü+E+l),...,(ß+A), and C=(ß+A+l),...,r. 

Expressions (55), (57), and (59) for surface corner points lying on the edges corresponding to 

q2=l - q1, and (55), (59), and (60) for surface corner points lying on the element face that is not aligned 

with the isoparametric coordinate surfaces, can be used with wedge prismatic elements to obtain three 

equations for the unknown displacement components of the surface corner points. These relations, 

together with the equations provided in (41), (45), (46), (48), and (49) for the other non-nodal corner 

points, can be grouped to form the 3x(T-fl) equations required for obtaining the relations (15), when 

wedge prismatic elements are incorporated. 

3. RESULTS 

In this section, the effective stiffness constants, C jk, of a four-layered cubic element with rectangular 

faces are calculated to demonstrate the capability of this newly developed formulation. Results are 

compared to those calculated by Chou's model showing a significant difference in transverse shear 

properties. The effects of stacking sequence of layer construction on the effective properties of the 

element will also be illustrated and discussed in detail. 

Figure 4 illustrates the coordinate system and constitutive relation in a four-layer laminated block 

(0.2 x 0.2 x 0.2 in). Coordinates 1 and 2 are on the plane of laminate plane. The ply orientation is 

defined as the angle between fiber direction and coordinate 1. A 0° ply has fibers oriented along 

coordinate 1.   The effective stiffness components are illustrated in a contracted notation (Cy, i and 
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Figure 4. Constitutive relation for an anisotropic four-layered element. 

j = 1 - 6) for convenience. Two layup constructions, a cross-ply [0/0/90/90] and an angle-ply [0/0/45/45], 

were investigated. Each ply has an equal thickness of 0.05 in. In fact, each ply is composed of 10 unit 

directional fiber layers with thickness of 0.005 in. The effective properties were calculated based on 

IM7 graphite/8551 epoxy material whose properties are shown in Table 1. An 8-node element which 

utilizes linear transform functions in Equation 4 for analysis was used to calculate effective properties of 

the material block. 
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Table 1. Material Properties of IM7/8551 

Ell = 22.50E6 PSI 
E22 = 1.20E6 PSI 
E33 = 1.20E6 PSI 
Vl2 = 0.33 
Vl3 = 0.33 
v23 = 0.31 
G12 = 0.70E6 PSI 
G13 = 0.70E6 PSI 
G23 = 0.53E6 PSI 

3.1 Transverse Shear Properties. Tables 2 and 3 show the comparison of effective stiffness for both 

layup constructions [0/0/90/90] and 0/0/45/45], respectively. Significant differences on transverse shear 

properties and shear coupling terms were found for both cases. The transverse shear properties (Cu and 

C55) for a layup construction of [0/0/90/90] are 36% lower than calculated by the new model. The 

transverse shear properties from Chou's model are basically calculated from a volume average. His model 

does not account for either continuity or compatibility of the materials through the thickness. A linear 

deformation was also made by Chou's model. Therefore, the in-plane properties (Cy, = 1,2, and 6) and 

transverse normal (C33) were found to be identical. These properties are considered to be exact under the 

assumption. 

For an angle-ply layup construction [0/0/45/45], transverse shear properties, C^ and C55, are different 

by 35% and 40%, respectively. The transverse shear coupling terms (C45 = C54) are 85% of difference. 

These results further illustrate the importance of the current model. In fact, larger errors may be obtained 

for an element with more complex ply orientations, stacking sequence, or various ply thicknesses by using 

the "volume average" approach. 

As discussed previously, both "volume average" and "plate theory" approaches cannot accurately 

calculate effective properties in the transverse direction. For a thick-section structure, the transverse shear 

properties are even more important since these structures generally carry more shear loads than thin-shelled 

structures. For finite element applications, accurate transverse shear properties are especially important 

since the elements are 3-D blocks with arbitrary shapes. 
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Table 2. Comparison of the Effective Properties of Cross-Ply Laminates 

Chou's Model 

0.1211E+08 0.5883E+06 0.5051E+06 0 0 0 

0.5883E+06 0.1211E+08 0.5051E+06 0 0 0 

0.5051E+06 0.5051E+06 0.1342E+07 0 0 0 

0 0 0 0.6033E+06 0 0 

0 0 0 0 0.6033E+06 0 

0 0 0 0 0 0.7000E+06 

3-D Solid Element Model 

0.1211E+08 0.5883E+06 0.5051E+06 0 0 0 

0.5883E+06 0.1211E+08 0.5051E+06 0 0 0 

0.5051E+06 0.5051E+06 0.1342E+07 0 0 0 

0     ■ 0 0 0.4413E+06 0 0 

0 0 0 0 0.4413E+06 0 

0 0 0 0 0 0.7000E+06 

Table 3. Comparison of the Effective Properties of Angle-Ply Laminates 

Chou's Model 

0.1497E+08 0.3117E+07 0.5444E+06 0 0 0.2694E+07 

0.3117E+07 0.4194E+07 0.4658E+06 0 0 0.2692E+07 

0.5444E+06 0.4658E+06 0.1342E+07 0 0 0.3933E+05 

0 0 0 0.5670E+06 0.4209E+05 0 

0 0 0 0.4209E+05 0.6512E+06 0 

0.2694E+07 0.2692E+07 0.3933E+05 0 0 0.3231E+07 

3-D Solid Element Model 

0.1497E+08 0.3117E+07 0.5444E+06 0 0 0.2694E+07 

0.3117E+07 0.4194E+07 0.4658E+06 0 0 0.2692E+07 

0.5444E+06 0.4658E+06 0.1342E+07 0 0 0.3933E+05 

0 0 0 0.4182E+06 0.2271E+05 0 

0 0 0 0.2271E+05 0.4637E+06 0 

0.2694E+O7 0.2692E+07 0.3933E+05 0 0 0.3231E+07 

24 



3.2 Effects of Stacking Sequence. In general, the plate theory assumes constant transverse shear 

stress distribution through the thickness. Accordingly, the effective transverse shear constants of a 

laminate calculated from the plate theory approach are independent of the stacking sequence. Recently, 

Roy and Kim (1989) showed the effects of stacking sequence on transverse shear properties 

experimentally. Models based on the deformations of a beam and a ring subjected to specific loading 

conditions were proposed by Roy and Tsai (1992). Their model reported the dependence of transverse 

shear properties on stacking sequence. However, only two specific geometries (beam and ring) and 

loading conditions were considered, and cannot be applied to a generalized case. 

Tables 4 and 5 illustrate the variations of electric constants in cross-ply [0/90] and angle-ply [0/45] 

laminates as functions of stacking sequence, respectively. In the cross-ply laminate case, the shear elastic 

constant, C44, which corresponds to shear stress and strain in the 2-3 direction (i.e., x23 and T23) increases 

as the 90° plies are located away from the laminate's midplane. The 90° plies have fibers oriented along 

coordinate 2 and provide more shear stiffness in the 2-3 direction. Thus, the maximum shear stiffness, 

044, occurs for the stacking sequence of [90/0/0/90]. On the contrary, the shear elastic constant, C55, 

which corresponding to shear stress and strain in the 1-3 direction (xl3 and yl3) decreases as the 90° plies 

are moved away from laminate's midplane. Since the 0° layers give a higher shear stiffness in this 

particular direction, the laminate with layup construction of [90/0/0/90] has the smallest shear constant, 

C55- 

Similar effects of stacking sequence on transverse shear constants, C^ and C55, and shear couplings, 

C45 and C54, were observed for laminates with angle-ply [0/45] construction shown in Table 5. The same 

conclusions can be drawn as those discussed in the previous section for the cross-ply laminates. The shear 

elastic constant, C44, which corresponds to shear stress and strain in the 2-3 direction (i.e., x23 and Y13), 

decreases as the 45° plies are moved away from the laminate's midplane. In general, the effects of 

stacking sequence are more significant for an element with irregular cross sections, complex layup 

constructions, and nonsymmetric stacking sequence. 

4. FINITE ELEMENT APPLICATIONS 

A finite element preprocessor was developed to generate finite element meshes with specific 

geometries. The effective properties of each element are calculated individually based on the model. 

Figure 5 shows the finite element model of a composite rocket motor case generated by the preprocessor. 
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Table 4. Effects of Stacking Sequence on Transverse Shear Properties of Cross-Ply Laminates 

[0/90/90/0] 

0.1211E+08 0.5883E+06 0.5051E+06 0 0 0 

0.5883E+O6 0.1211E+08 0.5051E+06 0 0 0 

0.5051E+06 0.5051E+06 0.1342E+07 0 0 0 

0 0 0     0.4278E+06 0 0 

0 0 0 0 0.4556E+06 0 

0 0 0 0 0 0.7000E+06 

[0/0/90/90] 

0.1211E+08 0.5883E+06 0.5051E+06 0 0 0 

0.5883E+06 0.1211E+08 0.5051E+06 0 0 0 

0.5051E+06 0.5051E+06 0.1342E+07 0 0 0 

0 0 0     0.4413E+06 0 0 

0 0 0 0 0.4413E+06 0 

0 0 0 0 0 0.7000E+06 

[90/0/0/90] 

0.1211E+08 0.5883E+06 0.5051E+06 0 0 0 

0.5883E+06 0.1211E+08 0.5051E+06 0 0 0 

0.5051E+06 0.5051E+07 0.1342E+07 0 0 0 

0 0 0     0.4556E+06 0 0 

0 0 0 0 0.4278E+06 0 

o 0 0 0 0 0.7000E+06 
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Table 5. Effects of Stacking Sequence on Transverse Shear Properties of Angle-Ply Laminates 

[0/45/45/0] 

0.1497E+08 0.3117E+07 0.5444E+06 0 0 0.2694E+07 

0.3117E+07 0.4194E+07 0.4658E+06 0 0 0.2692E+07 

0.5444E+06 0.4658E+06 0.1342E+07 0 0 0.3933E+05 

0 0 0 0.4114E+06 0.1576E+05 0 

0 0 0 0.3138E+05 0.5925E+06 0 

0.2694E+07 0.2692E+07 0.3993E+05 0 0 0.3231E+07 

[0/0/45/45] 

0.1497E+08 0.3117E+07 0.5444E+06 0 0 0.2694E+07 

0.3117E+07 0.4194E+07 0.4658E+06 0 0 0.2692E+07 

0.5444E+06 0.4658E+06 0.1342E+07 0 0 0.3933E+05 

0 0 0 0.5167E+06 0.3441E+05 0 

0 0 0 0.3441E+05 0.5881E+06 0 

0.2694E+07 0.2692E+07 0.3933E+05 0 0 0.3231E+07 

[45/0/0/45] 

0.1497E+08 0.3117E+07 0.5444E+06 0 0 0.2694E+07 

0.3117E+07 0.4194E+07 0.4658E+06 0 0 0.2692E+07 

0.5444E+06 0.4658E+06 0.1342E+07 0 0 0.3933E+05 

0 0 0 0.5204E+06 0.3746E+05 0 

0 0 0 0.3746E+05 0.5835E+06 0 

0.2694E+07 
  

0.2692E+07 0.3933E+05 0 0 0.3231E+07 
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Figure 5. Finite element model for a composite rocket motor case. 

The motor case consists of two filament-wound composite components. The case's inner region is a 

helically wound bottle with a geodesic winding pattern. The outer region of the motor case is a cylinder 

with a cross-ply layup construction. In addition, both the inner and outer cases were constructed with 

graphite and glass composites. 

The thickness of the composite varies along the axial direction in both the inner and outer cases, as 

shown in Figure 6. Due to the complexity of case geometry, the general elements are not rectangular and 

vary along the arc length. The elements are arbitrarily shaped and contain several plies with various fiber 

orientations and materials through the thickness in some areas. In fact, it is typically a finite element 

model used in a real-world application; the capability to determine the effective properties in the proposed 

model is indeed needed. 
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Figure 6. Laminate construction of the composite case. 

For a geodesic winding, the fibers are placed along the shortest path on the case surface and the 

winding angle (i.e., fiber orientation) varies along the path upon the geometry. The winding angles of the 

innermost layer are illustrated and plotted along the arc length in Figure 7. The winding angles vary 

dramatically in the dome and nozzle areas. The developed preprocessor calculates the winding angle at 

each element according to the geodesic path and case geometry. The stiffness components (Cj^,) of the 

innermost elements along the arc length are illustrated in Figure 8. For the most part, effective properties 

vary significantly in most materials. The variation is due to the combined effect of various winding angles 

and layup constructions. 

Clearly, the effective properties are essential to achieving an accurate finite element analysis. 

Currently, all the commercial packages were developed using either "volume average" or "laminated plate 

theory" to determine the effective properties. In general, the results are poor for structural analyses with 

complex geometries and layup constructions. In fact, ABAQUS suggests that no skewed elements be used 

in the finite element model to improve the accuracy of analyses. 
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Figure 7. Winding angles (fiber orientations) vary along the arc-length of the composite case. 
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Figure 8. Stiffness components at the innermost layer vary along the arc-length. 
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5.   CONCLUSIONS 

Based on strain energy approaches and finite element techniques, an effective property model was 

developed to determine the properties of an arbitrarily shaped element with multi-material regions. The 

model is especially suitable for 3-D finite element application due to the accurate transverse shear 

properties. The effective material stiffness calculated by the model was compared to these by Chou's 

model. Significant differences in transverse shear properties were found for a four-ply cubic element. 

The comparison illustrated the lack of accuracy of currently available models. Effects of stacking 

sequence on transverse properties were identified and discussed in detail. 

Having accurate transverse shear properties and the capability to model arbitrarily shaped elements 

are particularly important for finite element applications, especially for thick-section composites with near- 

net shape geometries subjected to complex loadings. A preprocessor was developed using the effective 

property model to generate properties for the finite element model. The preprocessor currently has 

capabilities to generate material properties for a finite element model for an axisymmetric filament-wound 

case and several other geometries of interest. The preprocessor is developed to be used with DYNA3D 

and ABAQUS finite element codes to perform dynamic analysis of composite structures with complex 

thick-section geometry. 
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